Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 209: 202-212, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37423044

ABSTRACT

Ejaculates present their own microbiota, and a link between ejaculates' microbiota and sperm quality and fertility exists. With the development of artificial insemination in animal breeding, ejaculates must be manipulated by diluting them with extenders and storing them at temperatures below body temperature. The effects that these processes have on the original semen microbiota have never been studied. This study explores the effects of the protocol for preparing refrigerated goat buck semen doses and storing on seminal microbiota. Semen from six adult goat bucks of the Murciano-Granadina breed (24 ejaculates) was used, cooled to 4 °C in a skimmed milk-based extender, and stored at this temperature for 24 h. Samples were taken in different steps: in the raw ejaculates (ejaculates), after dilution with the refrigeration extender (diluted), immediately after reaching 4 °C (chilled 0 h) and the samples refrigerated at 4 °C and stored at this temperature for 24 h (chilled 24 h). Sperm quality (motility and integrity of plasma and acrosomal membrane, and mitochondrial functionality) was also evaluated. Bacterial 16S rRNA sequencing was used to study the seminal microbiota. Our results indicated that both refrigeration and storage at 4 °C negatively affected sperm quality parameters. Preparing semen doses and their subsequent conservation caused a significant change in the bacterial community structure. Raw ejaculates showed a lower Pielou's evenness index than the other samples (diluted, chilled 0 h and chilled 24 h). Ejaculates also had a lower Shannon's diversity index (3.44) than the diluted semen (4.17) and the semen chilled for 24 h (4.43). Regarding beta diversity, significant differences were detected between ejaculates and the other treatments. Differences were also found in unweighted UniFrac distances between the semen chilled for 0 h and that chilled for 24 h. At the genus level, marked effects of preparing doses and their subsequent conservation were also evident: 199 genera that were absent in ejaculates were found in the semen chilled and stored for 24 h; 177 genera that were present in ejaculates disappeared after 24-h refrigeration. In conclusion, the extender and protocol for preparing refrigerated goat buck semen doses considerably modify microbial ejaculate composition.


Subject(s)
Semen Preservation , Semen , Male , Animals , Semen Preservation/veterinary , Semen Preservation/methods , Goats , RNA, Ribosomal, 16S , Sperm Motility , Spermatozoa
2.
Front Vet Sci ; 9: 867671, 2022.
Article in English | MEDLINE | ID: mdl-35647092

ABSTRACT

Changes in semen microbiota are associated with alterations to sperm quality and fertility. However, the microbiota from most livestock species has not yet been studied. Goats are seasonal breeders, but semen microbiota has never been described in this species, and it is unknown how seasonality affects it. Our study objective is 2-fold: to describe the microbiota in goat buck ejaculates and to determine if it differs between breeding and non-breeding seasons. Semen from six males of the Murciano-Granadina breed was collected during both seasons. Two replicates were performed per male and season on different days. The microbiota was characterized by genomic sequencing technology. Sperm quality was also evaluated. Repetition was not significant for the studied variables. Sperm velocities were higher for the breeding than for the non-breeding season. The ejaculates from both seasons also differed in the proportion of apoptotic spermatozoa. The five dominant phyla were Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria, and Bacteroidetes during the breeding season and Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria during the non-breeding season. The dominant genus during both seasons was Ureaplasma. Differences in microbial community structure (the beta diversity) were found. A decrease in the relative abundance of the genus Faecalibacterium and an increase in the genera Sphingomonas and Halomonas were observed in the ejaculates collected during the breeding season. Sphingomonas and Faecalibacterium abundance favorably and unfavorably correlated with sperm quality, respectively. In conclusion, the semen microbiota from goat bucks varies between breeding and non-breeding seasons, and the microbiota remains stable for 7 days within a season. In addition, the genera Sphingomonas and Faecalibacterium could be possible biomarkers of semen quality in goat bucks. These results contribute to an in-depth understanding of the effects of reproductive seasonality on goat buck ejaculates.

3.
Animals (Basel) ; 10(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333971

ABSTRACT

Cooling goat sperm insemination doses to 4 °C causes a delay in their delivery. However, chilling these doses during the transportation period could expedite their delivery and the insemination process. In this study, an economical and simple apparatus for chilling goat semen doses in itinere was developed, and the in vitro quality and in vivo fertility of these doses were compared with those chilled by means of a programmable water bath in the laboratory at a rate of -0.18 °C/min. Of the tested prototypes, the one that provided an optimal combination of the chilling rate (average of -0.09 °C/min) and time required to reach 4 °C (3 h 45 min) was selected for further testing. Immediately after chilling and 24 h later, the doses chilled in the prototype were determined to be of higher quality than the samples chilled in the programmable water bath. Finally, the kidding rate was similar between the doses chilled in the programmable water bath (61.7% ± 7.1%) and in the prototype (56.1% ± 5.9%). In conclusion, successful chilling of goat sperm doses during transport is possible, thereby accelerating the delivery of insemination doses.

4.
Animals (Basel) ; 10(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153053

ABSTRACT

Lactic acid bacteria (LAB) dominate human vaginal microbiota and inhibit pathogen proliferation. In other mammals, LAB do not dominate vaginal microbiota, however shifts of dominant microorganisms occur during ovarian cycle. The study objectives were to characterize equine vaginal microbiota in mares by culture-dependent and independent methods and to describe its variation in estrus and diestrus. Vaginal swabs from 8 healthy adult Arabian mares were obtained in estrus and diestrus. For culture-dependent processing, bacteria were isolated on Columbia blood agar (BA) and Man Rogosa Sharpe (MRS) agar. LAB comprised only 2% of total bacterial isolates and were not related to ovarian phases. For culture-independent processing, V3/V4 variable regions of the 16S ribosomal RNA gene were amplified and sequenced using Illumina Miseq. The diversity and composition of the vaginal microbiota did not change during the estrous cycle. Core equine vaginal microbiome consisted of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria at the phylum level. At the genus level it was defined by Porphyromonas, Campylobacter, Arcanobacterium, Corynebacterium, Streptococcus, Fusobacterium, uncultured Kiritimatiaellae and Akkermansia. Lactobacillus comprised only 0.18% of the taxonomic composition in estrus and 0.37% in diestrus. No differences in the relative abundance of the most abundant phylum or genera were observed between estrus and diestrus samples.

5.
Front Vet Sci ; 7: 371, 2020.
Article in English | MEDLINE | ID: mdl-32719814

ABSTRACT

The vaginal microbiota plays an important role in the health of dairy cattle, and it could be manipulated for the prevention and treatment of reproduction-related infections. The present study profiles and compares the vaginal microbiota of healthy dairy heifers during the estrous cycle focusing the results in follicular (estrus) and luteal (diestrus) phases using 16S rRNA sequencing of the V3-V4 hypervariable region. Twenty 13-16-months-old virgin dairy heifers from a single farm were included in this study. Vaginal swabs and blood samples were obtained during estrus (6-8 h before artificial insemination) and diestrus (14 days after insemination). Estrus was evaluated by an activity monitoring system and confirmed with plasma progesterone immunoassay. Results showed that the taxonomic composition of the vaginal microbiota was different during the follicular and luteal phases. At the phylum level, the most abundant bacterial phyla were Tenericutes, Firmicutes, and Bacteroidetes which comprised more than 75% of the vaginal microbiota composition. The next more abundant phyla, in order of decreasing abundance, were Proteobacteria, Actinobacteria, Fusobacteria, Epsilonbacteraeota, and Patescibacteria. Together with Tenericutes, Firmicutes, and Bacteroidetes represented more than 96% of the bacterial composition. Ureaplasma, Histophilus, f_Corynebacteriaceae, Porphyromonas, Mycoplasma, Ruminococcaceae UCG-005, were the most abundant genera or families. The results also showed that the vaginal microbiota of dairy heifers was non-lactobacillus dominant. The genus Lactobacillus was always found at a low relative abundance during the estrous cycle being more abundant in the follicular than in the luteal phase. Despite more research is needed to explore the potential use of native vaginal microbiota members as probiotics in dairy heifers, this study represents an important step forward. Understanding how the microbiota behaves in healthy heifers will help to identify vaginal dysbiosis related to disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...